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Abstract
The paper presents the opportunity for using 
multi-objective optimization for the development of 
ranking meta-classifiers being a synthesis of simple 
ranking domain functions. The method of threshold de-
termination in the developed ranking classifiers applied 
in medical diagnostics was presented. Analysis was con-
ducted of properties of medical diagnoses acquired with 
the application of thresholds for both simple and complex 
classifiers and for meta-classifiers.

1. Introduction
Diagnostic information on the patient’s health contained 
in medical data in the area of disease symptoms, risk fac-
tors and results of specialist laboratory tests are highly 
diversified and in most cases of a multimedia charac-
ter[8,9,13,15]. The development of classifiers deriving from 
such comprehensive, complex and differentiated med-
ical data is a difficult task. The development of simple 
classifiers e.g. domain and in particular binary is much 
easier.[6,24,28]. This leads to a problem of fusion of the 
acquired diagnostics information, reduced in most cas-
es to so-called simple classifier synthesis. The specific 
nature of  medical diagnostics, due to uncertainty and 
incompleteness of medical data and due to the fact that 
the patient may suffer not from a single disease but from 
two or more, gives preferences to the multi-label (multi-
class) classifiers[6,7,13,15]. Application of single-label (sin-
gle-class) classifiers , including in particular ranking 
ones, requires the determination of a relevant threshold 
tres. As explained above, the ranking-leading diagno-
sis does not need to be correct, not to mention the con-
comitant diseases positioned further in the ranking. The 
tres should enable extending the diagnosis beyond the 
ranking-leading diagnosis in a way to ensure that the 
actual diseases are covered by the threshold set on one 
hand and that this threshold set is not excessively ‘com-
prehensive’ on the other hand. An excessively compre-
hensive threshold set extends and increases the costs of 
the diagnostic process. This set forms the basis for fur-
ther diagnostics activities (iterations) consisting in the 
selection of a relevant set of specialist laboratory tests 
or consultations to make the diagnosis more precise. 
Due to the commonness of ranking classifier applica-
tion in the medical diagnostics support algorithms, the 
problem of determining relevant tres value gains on im-
portance. This paper is an attempt to present the meth-
od of tres value determination without the need to use 
the subjective findings of the decision-making body. 
Content of diagnosis set resulting from a specific tres 

value of the simple (component)  classifier  should  be  
higher,  the  ‘poorer’  or  less  reliable      the classifier 
that was applied. The rankings developed on the basis of 
correctly performed synthesis (fusion) of simple classi-
fiers[2,8,10,13,28] should have relevantly higher thresholds 
and therefore less numerous sets of resulting diagnoses. 
The condition that the set of diagnoses resulting from the 
threshold value of a classifier being a synthesis of sim-
ple classifier should contain an intersection (product) 
of sets of diagnoses resulting from the thresholds of all 
component classifiers seems to be intuitively obvious. 
When introducing the term of thresholds in the rankings 
generating the single-class classifiers, we may convert 
them into multi-class classifiers. The specific nature of the 
medical diagnostics processes, due to common uncertainty 
and incompleteness of data and possibility of the presence 
of concomitant diseases, practically excludes the support 
algorithms using the single-label classifiers. On the oth-
er hand, the vast majority of medical diagnostics support 
algorithms are algorithms that apply the ranking func-
tions defined on the basis of various mathematic simi-
larity (fitting) models[24]. Thus the problem of correct de-
termination of thresholds in medical diagnostics ranking 
development becomes of great importance.

2. Threshold in ranking 
applications
Let X determine the finite set of medical diagnostic data 
sets (observations, instances, results), called an observa-
tion space.

 set of labels (objects) of disease units, 
numbered with the  index. 

A single-label classifier will be the function

     (2.1)

Each observation (instance)  is ‘associated’ 
with the single label 

    (2.2)

A multi-label classifier will be the function

     (2.3)
Thus    (2.4)

For each observation  we may define a relation of 
ranking preferences Rx in a way that  when and 
only when for the observation , lablel   is more 
preferred (is ‘better’, more ‘fitted’) than label . 
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The symbol  will determine the ranking generated by 
relation [2,5].  In practice, the models (relations) Rx are 
frequently defined (determined) using ranking functions:

     (2.5)

values of which are in general determined on the basis 
of different similarity (‘fitting’, ‘distance’) models, for 
example: Tversky, Bayes, Jaccard, Hamming, Dice, Sokal, 
Russel, Lance and others) observation  to disease unit 
labeled  [6,7,24,28].

   (2,6)

Functions  are sometimes called the utility func-
tions or similarity or fitting ratios. In this paper, we will 
further assume that the functions  are normalized in 
the range of [2, 18, 25, 26, 27.
Thus, if for any it is true that , from the 
perspective of result (observation)  is placed in 
the ranking before the label . Definition (2.6) uses 
purposefully the sign , which results mostly from 
the fact that the ranking functions are generally not 
injective functions (this feature results usually from 
the properties of a model used for definition),[2,20]. 
Such an assumption results in that the relations of 
preference . are not antisymmetric[20] which means 
that these determine only the so-called quasi-order[2]. 
The rankings acquired in this way are not permutations 
of set  (are not linear rankings). Adopting the weaker as-
sumptions is implied, however, by the ‘practice’ of defin-
ing the ranking functions, which – as already mentioned 
– are usually not injective functions. The symbol  
shall determine the sequence (  set ranking) acquired 
with the use of function  [5]. Such ranking functions are 
frequently used for classifier development. Let  
be a certain ranking function determined on set .

This function determines the classifier

 

according to the following formula:

   (2.7)

Relation (2.7) may be presented as follows:

  (2.8)

The relation (2.8) presents the association between the 
classifier  and the ranking function . The classifi-
er of type (2.7) shall mean the simple ranking classifier. 
The specific nature of medical diagnostics makes the sin-
gle-label classifiers, including in particular those devel-

oped on the basis of ranking functions, insufficient for 
physicians. As an initial diagnosis, they select a certain 
number of classes (disease units) placed in the ranking at 
top positions. This generates a significant problem of de-
termining the values of the so-called threshold – tres, on 
which the ‘content’ of initial diagnosis  (threshold 
diagnosis) depends. It may be written as follows:

   (2.9)

The value of the real number of tres is of significance 
since it determines a certain diagnostic compromise be-
tween striving for increased reliability of initial diagnosis 
and the number of subsequent diagnostic iterations and, 
therefore, the total time and cost of the diagnostic proce-
dure. Tres in diagnostic classifiers based on the ranking 
functions are generally the higher, the more precise and 
reliable are the models being the foundation of the func-
tions. 

Synthesis of simple classifiers, as a result of which more 
precise and reliable classifiers are obtained (with lower 
classification error) increases the thresholds and, there-
fore, narrows the set of result diagnoses. The conse-
quence of such an approach is in general a shorter period 
of the diagnostic process and its lower cost. ‘Component’ 
classifier thresholds are obviously lower due to their low-
er accuracy and reliability.

3. Simple ranking 
synthesis – meta-rankings 
Let further be  - a finite label set 
and ranking function of the following type:

  
 ,  (3.1)

This function generates the following set (committee) 
of simple (ranking) classifiers):

   (3.2)
where     (3.3)

Set  shall be the ranking image of set  for the observa-
tion , given by the function  (3.1).

   (3.4)

Element  is an image of label l in the meaning of its 
assessment by all ranking functions , understood as 
multi-objective level of similarity (fitting) of the observa-
tion  to the disease unit labeled .
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Thus  (3.5)
where  ranking value of label  in the meaning 
of n-ranking function associated with observation  .
For each    it is true that . Set Y shall 
mean the classifier synthesis area. The synthesis relation 
(or relation of preferences of classifier committee) shall 
be the following relation:

 
defined as follows:
  (3.6)

The synthesis relation R expresses the principle of prefer-
ences of committee in the area of deciding whether label 
 is ‘better fitted’ to observation  compared to label 

. There are many known preferences applicable to such 
synthesis. The most typical principle is the Pareto princi-
ple (relation, filter). It states that label  is more preferred 
(better fitted to observation x ) than label  provided that  
 is at least at the same position (or higher) as label  in 

the ranking of each committee member[2,26]. This means 
that the following must be true: 

   (3.7)

The Pareto Filter (PF) is an algorithm enabling determi-
nation from any set of elements the set of elements of the 
highest quality in this set (in the meaning of Pareto rela-
tion)[3,4,26]. The effect (result) of applying the Pareto filter 
on set Y is so-called ‘Pareto front’ (set of nondominated 
(minimum)) elements in the meaning of Pareto relation  
defined as follows:  

Therefore, the result of the filtration process is decisive 
for the adopted preferences (filtration) relation R (in more 
detail – its properties). So, such a relation is frequently 
called a preference filter or brief ly: filter. The general re-
f lection of the Pareto filter is a cone filter (CF), in which 
the filtration reaction is generated by a cone[2,3]. The CCS 
task – complex (integrated) classifier synthesis – may be 
defined as multi-objective optimization[2,3,4] of the form:

  (3.8)
which may be abbreviated to[2,3,26] :
   (3.9)

The synthesis relation R may be used to develop a complex, 
multi-label classifier (meta-classifier) and meta-ranking 
(committee ranking), being a ‘specific synthesis’ of com-
ponent rankings determined by the ranking functions 

. For meta-ranking and component rankings one 
may determine the relevant (in the meaning of preference 
relation R) thresholds, which will enable the acquisition 

of justified and extended multi-label classifications upon 
application. The solution of the task (3.8) is thus an an-
ti-image[4,20] of the task solution (3.9), i.e. subset of labels, 
from which there are no ‘better’ labels in the set L (better 
fitted) to the observation . 

     (3.10)
where  (3.11)
thus    (3.12)

Set  is called a nondominated label set or Pareto set 
(front)[3,4,26,27]. This is a subset of these labels from the set 
L, from which there are no better ‘fitted’ labels to the ob-
servation . The integrated classifier in the meaning of 
relation R (meta-classifier) is the complex classifier

   (3.13) 

This is in general the multi-label classifier, which assigns 
to each observation (instance)  the ‘optimum’ subset 
of nondominated labels  in the meaning of relation 
R. In medical diagnostics, this diagnosis is considered 
the ‘best fitted’ diagnosis corresponding to observation 

  This proposal is the most important and the most 
frequently applied diagnostic reference in the process of 
computer diagnosing support [6,7]. Having the set of sim-
ple classifiers based on the ranking functions, we may 
develop a meta-classifier (component classifier) based on 
the ranking function F (ranking meta-function), being a 
synthesis of the applied ranking functions .  It is 
done by determining the ‘resulting’ ranking  the most 
similar’ to the component rankings . A simple 
method for the development of meta-ranking  is using 
the ranking function defined on the basis of the integrat-
ed classifier synthesis task (3.8) considered as a typical 
task of multi-objective optimization[3,4,26]. The ranking 
meta-function F may be defined using the Minkowski 
standard in the following manner (3.14) : 

The symbol  shall apply to standard with parame-
ter p [2,3]. Element  is a greatest 
lower bound of set Yx for relation R[3,4], i.e. so-called ide-
al point (utopian point)[3,4,26]. The element (point)   
an image of utopian (virtual) label of the highest possible 
ranking parameters, i.e. such that

    (3.15)

Assuming for convenience that all ranking functions 
are normalized to the range of   , we will obtain(3.14) 

upon normalization: 
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exists with that
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i.e. in consequence a normalized ranking 
meta-function 
  (3.16)

where  - normalization coefficient[7]. 
The ranking meta-classifier shall adopt the following 
form according to (2.7):

   (3.17)

Set  may be considered an initial diagnosis. In many 
cases this is a single-element set[3, 4,26]. The extension of 
initial diagnosis with regard to the specific nature of 
medical diagnostics may be a set of diagnoses compliant 
with ranking  above the determined tres:

   (3.18)

The tres symbol shall be the value of threshold in the 
ranking acquired thanks to ranking meta-function (3.16). 
The problem of the method for determining an optima 
(relevant) value of such threshold arises here.

4. Method of ranking 
function threshold 
determination 
Tres in diagnostic applications should meet a series of 
conditions referred to in Clause 2 of this paper. 

One of the key conditions to be met by tres is a request 
that the threshold label set (3.18) contains the set of all 
labels, of which there are no better (more fitted or simi-
lar) labels in the label set  in the meaning of the adopted 
preference relation , i.e. the set of nondominated labels 

 . Set of threshold labels cut off by the determined value 
of tres is specified by the relation (3.18). To meet this con-
dition, the following must be true:

   (4.1)

The correlation between the preference relation  and the 
ranking function  is specified by the following lemma.

Lemma 1
Let R be the preference relation (3.6) and function F be 
a ranking meta-function (3.14). For each pair  it 
is true that . This means that y is higher in the 
ranking than z (i.e. if y is better from z in the meaning of 

the adopted preference relation , y must be placed nearer 
the ideal point than element z) . 

Proof:
The condition  may be written as follows:

 

  (4.2)

For Minkowski metric[2,26]: 

  (4.3)

To prove the lemma, we must demonstrate that for any 
pair  is is true that (4.2).
if     (4.4)

From the definition of greatest lower bound  of set :

    (4.5)

Therefore it is true that:

    (4.6)

With regard to (4.6), the relation (4.3) shall be as follows:

  (4.7)

The relation (4.7) will be met if we demonstrate that:

 

Subtracting from both sides , we obtain

 

This is true since  and this means that  
for each  . 

Lemma 1 may be also read as follows: if element y pre-
cedes element z in the meaning of preference relation   
(is better in terms of  the element y is in the meta-rank-
ing  at higher position (at east at the same position) 
than element z, which further means that if label  such 
that  is preferred (in terms of  more than label 
 such that , then in the ranking  determined 

by ranking meta-function F, label  precedes label  . 
To meet the general condition (4.1), value of tres should 
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be such that even the most distant from the ideal point 
(in terms of the adopted metric) element  should be 
placed in a set cut-off by tres.

Let’s determine with  symbol the number  

equal to    (4.8)

Thus the tres value meeting the condition (4.1) may be 
defined as follows: 

    (4.9)

The set of ‘cut-off elements’ by the threshold of function 
  shall be as follows: 

   (4.10)

The anti-image of this set may be considered the value 
(indication) of the new ranking meta-classifier :

   (4.11)

This set may be considered the extender initial diagnosis.

The key property of this new extension is the fact that the 
content (indication) of the integrated classifier  is a 
subset of values (indications) of the ranking meta-classi-
fier  i.e. . This is true since  i.e. for 
each  it must be true that: 

According to relation (4.8) for each  it is true that

    

thus  

addiing to both sides  we obtain

 

thus for each  we obtain 

Therefore  
thus   

A set of labels  may contain, apart from labels from 
set , the labels (‘diagnosis extensions’) which do not 
belong to this set. These labels are of unique properties, 
specified (among others) by the two following lemmas.

 
 

Lemma 2 
If in the set  (in the set of the remaining initial  
diagnosis labels) there is a label better than any other la-
bel in set  in the meaning of ranking meta-function F, 
in set  there is at least one label better than such label 
in the meaning of preference relation . 

Proof:

 

Since , according to (3.10) and (3.11) in set   there 
must be such label , that 

Lemma 3
For each label  in set  there is such label , 
which is higher from this label (at least at the same posi-
tion) in the meta-ranking .

Proof:
In set  there is such label , which is better than label  
 in the meaning of relation  (see (3.10),(3.11) ) i.e. such 

that . If so, under lemma 1 the following is 
true: 

 

which means that  is positioned higher in the meta-rank-
ing that label . Thus, the tres defined in (4.9) determines 
the nontrivial ‘cut-off diagnoses set’ containing all non-
dominated diagnoses (3.12) and the additional ones 
meeting lemmas 2 and 3. 

The ranking meta-function  may be considered as 
the effect of synthesis of ranking functions  and 
ranking , respectively, as the synthesis of component 
rankings .

For the component ranking functions  we may de-
termine the value of . These numbers, iden-
tically as the tres value, must meet the following condi-
tions (among others, be a part of the ‘cut-off ’ label set, 
labels from which there are no better fitted labels  ).  
Thus we may determine them as follows (see (3.11),(3.12)):

    (4.12)
   (4.13)

It is easy to demonstrate that

  for each   (4.14)
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Set of labels (diagnoses) determined by tres(n) 
is as follows:

   (4.15)

For each  it is obviously true that:

    (4.16)

5. Ranking synthesis – 
diagnostic example 
The example concerns determination of initial diagno-
sis for the patient on the basis of diagnosed symptoms 
of disease and risk factors with regard to their intensi-
fication. The applied diagnostic model, described in the 
papers[5,6,7] also considers the significance levels for the 
applicable symptoms and risk factors in diagnosing in-
dividual diseases. Data on the patient’s health condition 
(observation  ) were divided by domains into two ar-
eas: data on symptoms presence and data on risk factors 
and their intensification. These data formed a basis for 
developing two classifiers.

  - similarity rate for symptoms[6,7]

  - similarity rate for risk factors[6,7]     (5.1) 

Set  in the analyzed example is a set of twen-
ty disease units (labels) indexed with , presented in 
Table 1. This table also contains (for the adopted obser-
vation of medical results  ) the values of both ranking 
functions (5.1). As we see, these values are not injective, 
therefore the rankings  and  developed on the ba-
sis thereof will be not linear.

On the basis of the a/m functions, the following two 
classifiers were developed:

    (5.2)

Classifications acquired with these classifiers 
(initial diagnoses) are as follows:

  (5.3)

Diagnostic concluding on the basis of these results 
is most probably hindered and doubtful, for example due 
to the fact of their divergence:

    (5.4)

Determining the applicable thresholds - tres (1) and 
tres (2) – we could ‘extend’ the sets of indications (5.3), 
increasing the safety of further diagnostic process. 
The rankings of set  generated by the ranking functions 
(6.1) are ‘highly diversified’ and have the following form:

 
 

Assuming on arbitrary basis that  and  
we obtain:

 

Referring to ((5.3) and (5.4)) we obtain the initial 
indication:

  (5.6)

Adopting the proposal  as an initial diagnosis is risky 
– only one element , whereas adopting the proposal    
is safer, however, expensive due to time and costs of fur-
ther diagnostic iterations making the diagnosis more pre-
cise. 

Figure 1 presents the area of synthesis  as well as ranking 
image   of set for observation  (3.5) and ideal point 

  (see (3.15). This point is a ranking image of 
virtual label (utopian label) of such a disease unit, which 
would have the highest similarity rate in terms of symp-
toms and risk factors under observation  [6,7,24]. As the 
synthesis relation the Pareto relation was adopted – the 
most common in such cases[2,3,4,6,26,27]:

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.3 0.4 0.5 0.6 0.6 0.5 0.5 0.3 0.2 0.5 0 0.1 0.2 0.4 0.5 0.4 0.3 0.2 0.3 0.4

0.6 0.7 0.6 0.4 0.3 0.2 0.1 0.1 0.1 0.5 0.4 0.6 0.6 0.5 0.4 0.3 0.2 0.4 0.5 0.6

Table 1.
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m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.06 0.722 0.781 0.622 0.522 0.412 0.314 0.251 0.201 0.699 0.251 0.412 0.510 0.639 0.606 0.475 0.339 0.422 0.562 0.699

3 2 10 20 14 4 15 1 19 5 13 16 18 6 12 17 7 8 11 9

4 5 3 10 15 6 7 2 20 14 16 1 19 17 8 13 18 9 12 11

2 3 20 1 13 12 10 14 19 4 15 18 11 5 16 6 17 7 8 9
Table 2.

 

Figure 1. Area of synthesis  and set   along with ranking 
reference point 

According to (3.11) and (3.13), an integrated classifier 
(generated in result of synthesis) shall be the classifier:

   (5.8)

Set  , present in (5.8) was marked in Figure 1

Thus 

that is  

This is a set of disease units (labels), from which there 
are no ‘more fitted’ units in set  with regard to obser-
vation  in the area of  diagnosed symptoms and risk 
factors. This is the effect of operation of the integrated  
classifier (3.13).

Let’s notice that

  (5.10)

An obligatory condition (4.1) is therefore not met which 
means that the arbitrary values tres(1) and tres(2) were 
not selected properly.
Further part of this paper presents the results of classifi-
cation acquired by application of an additional complex 
classifier developed based on ranking meta-function 
(3.16). Values of this function and applicable rankings are 
presented in Table 2.

For simplified form, instead of   , we will use   
(assuming that p=2). Threshold tres, in line with (4.9) has 
a value of:

 

wheras   (5.11)

Thus  

Figure 1 presents the cut-off area according to threshold 
tres=0,62  and cut-off set 

 

Thus according to (4.11) we obtain: 

  (5.12)

It is true that:

 

As we see,  is the extension of diagnosis of the inte-
grated classifier  by certain new labels (disease units):
  (5.13)

The labels from this set are better in terms of meta-func-
tion F from label no. 4 (see Lemma 2). In line with Lem-
ma 2, if there is a label in this set, which is better than 
any other label from set  in terms of meta-function 
F, there is a label in set   better than such label in the 
meaning of . Therefore: 

 

The ranking function  generates the ranking me-
ta-classifier (3.17):

  (5.14)

For analytical purposes is is worth to determine the values 
of tres(1) i tres(2) for the rankings leading to simple clas-
sifiers  and  (see 4.12). Pursuant to (4.12) we will 
obtain the following values tres(1)=0,4 and tres(2)=0,4 
and therefore the applicable cut-off sets (4.13):

 

1/2016:  The problem of thresholds determination in ranking classifiers applied  in medical diagnostics
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NO. Classifier CLASSIFIER INDICATIONS INITIAL DIAGNOSIS  INTERSECTION WITH SET JACCAR’S CONFORMITY TO SET 
1
2
3
4
5
6

7

8
9

Table 3.

The obtained results and their properties are presented in 
the table below.

Table 3 presents the list of indications of the individual 
classifiers on the basis of observation  with reference 
to set . 

As we see, a significant discrepancy of the component 
rankings  and    resulted in lowering the tres(1) and 
tres(2) and thus led to highly ‘extensive’ (blurred, non-ex-
pressive) diagnostic proposals.

The last two columns of the table present information on 
conformity of the conformity rate of the indication of the 
given classifier with ‘baseline indication’  , concern-
ing the set of labels, from which there are no other better 
fitted (see (3.15)). The last column of the table contains 
the values of Jaccard’s conformity (similarity) index[24,28] 
of indication of a given classifier with a set of diagno-
sis, from which there are no better fitted (see (3.11) and 
(3.12)). The next to last column contains information on 
‘intersection’ of the indication of a given classifier with 
the set of nondominated labels  and 
coverage index with regard to intersection (proportion of 
a number of nondominated labels contained in the clas-
sifier indication to the total number of nondominated 
labels).

7. Summary 
The paper presents the method of synthesis of simple 
classifiers based on the ranking function and using the 
multi-objective optimization methodology. The synthe-
sis applies the simpliest relation used in the multi-ob-
jective optimization (3.7), the so-called Pareto relation. 
Using the Pareto classifier (3.13) also enables addition-
al determination of the tres values for ranking classifi-
ers (simple) and any complex classifiers. Among others, 
the paper defines the ranking meta-classifier (3.17) and 
applicable tres. Also, the specific properties of the addi-

tionally obtained diagnoses present in the cut-off set  
were discussed. In practice, determination of tres (4.9) 
must not require determination of Pareto set, which may 
be complicated. Useful estimation of the tres value may 
be a distance of the lexicographic element of set    the 
most distant from the ideal point, which is much easier 
to determine[3,4]. The method of threshold determination 
may be used for any ranking classifiers, among others, 
those developed on the basis of weighted totals of compo-
nent rankings, averaged rankings, voting rankings, etc. 
Even a brief analysis of the results obtained in the exam-
ple (including analysis of Figure 1) demonstrates obvious 
benefits resulting from synthesis of classifiers leading to 
increased value of many indexes used for the assessment 
of quality of classifiers, such as: ranking function injec-
tivity index, ambiguity index, expressiveness index and 
reliability of indications [1,6,7,28].
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